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Deep Learning From Multiple
Noisy Annotators as A Union

Hongxin Wei , Renchunzi Xie, Lei Feng , Bo Han , and Bo An

Abstract— Crowdsourcing is a popular solution for large-scale
data annotations. So far, various end-to-end deep learning meth-
ods have been proposed to improve the practical performance
of learning from crowds. Despite their practical effectiveness,
most of them have two major limitations—they do not hold
learning consistency and suffer from computational inefficiency.
In this article, we propose a novel method named UnionNet,
which is not only theoretically consistent but also experimentally
effective and efficient. Specifically, unlike existing methods that
either fit a given label from each annotator independently or
fuse all the labels into a reliable one, we concatenate the
one-hot encoded vectors of crowdsourced labels provided by
all the annotators, which takes all the labeling information
as a union and coordinates multiple annotators. In this way,
we can directly train an end-to-end deep neural network by
maximizing the likelihood of this union with only a parametric
transition matrix. We theoretically prove the learning consistency
and experimentally show the effectiveness and efficiency of our
proposed method.

Index Terms— Annotators, crowdsourcing, noisy labels, tran-
sition matrix.

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved remark-
able success on various real-world applications over

the past years, while they heavily rely on a large number
of training examples with accurate labels. To alleviate this
issue, crowdsourcing provides a potential solution for large-
scale annotations, which aims to elicit the correct label from
crowdsourced labels. However, the collected crowdsourced
labels could be very noisy due to human mistakes, especially
for some difficult tasks like image annotation [1]–[3] and
music genre classification (MGC) [4].

Manuscript received June 12, 2021; revised December 8, 2021; accepted
April 8, 2022. This work was supported by the National Research Foundation,
Singapore, through its Industry Alignment Fund–Pre-Positioning (IAF-PP)
Funding Initiative. The work of Lei Feng was supported in part by the National
Natural Science Foundation of China under Grant 62106028 and in part by the
CAAI-Huawei MindSpore Open Fund. The work of Bo Han was supported in
part by the NSFC Young Scientists Fund under Grant 62006202 and in part
by the RGC Early Career Scheme under Grant 22200720. (Corresponding
author: Lei Feng.)

Hongxin Wei, Renchunzi Xie, and Bo An are with the School of
Computer Science and Engineering, Nanyang Technological University,
Singapore 639798 (e-mail: hongxin001@e.ntu.edu.sg; renchunzi.xie@ntu.
edu.sg; boan@ntu.edu.sg).

Lei Feng is with the College of Computer Science, Chongqing University,
Chongqing 400044, China (e-mail: lfeng@cqu.edu.cn).

Bo Han is with the Department of Computer Science, Hong Kong Baptist
University, Hong Kong SAR, China (e-mail: bhanml@comp.hkbu.edu.hk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3168696.

Digital Object Identifier 10.1109/TNNLS.2022.3168696

For training a classifier with noisy crowdsourced labels from
multiple annotators, the key is how to abstract information
from the imperfect crowdsourced labels. A traditional solution
is to select the true label from crowdsourced labels by majority
voting [5], [6] and train a classifier with the selected true
label. However, this naive method would cause biased results
because it simply assumes that all annotators are equally
reliable, which is usually impractical since different annotators
normally have different levels of expertise [7]. In order to
capture the expertise levels of different annotators, some
variants of expectation-maximization (EM) algorithm [7] were
adapted to infer the ground-truth label and train the classifier
alternately. Due to the iterative manner, EM-style algorithms
are computationally expensive, especially when DNNs are
used [2]. To improve the efficiency of training with DNNs,
recent studies (e.g., CrowdLayer [8] and SpeeLFC [9]) aim
to train an end-to-end deep neural network with multiple
parametric annotator-specific transition matrices. Although
they have achieved satisfactory practical performance, they
still suffer from computational inefficiency and do not hold
learning consistency.1

To further address the above two limitations, we propose a
novel method named UnionNet, which is not only theoretically
guaranteed but also experimentally effective and efficient.
Specifically, unlike existing methods that either fit a given label
from each annotator independently or fuse all the labels into
a reliable one, we concatenate the one-hot encoded vectors
of crowdsourced labels provided by all the annotators, which
takes all the labeling information as a union and keeps it
intact and coordinates multiple annotators. In this way, we can
directly train an end-to-end deep neural network by maximiz-
ing the likelihood of the intact labeling information with only
a transition matrix. In summary, the key contributions of this
article are as follows.

1) We propose UnionNet, a novel method that takes the
labeling information provided by all annotators as a
union, and trains an end-to-end DNN maximizing the
likelihood of this union with only a parametric transition
matrix.

2) For theoretical guarantee, we prove the learning con-
sistency of UnionNet by establishing an estimation
error bound, which shows that obtained empirical risk

1Learning is consistent, if and only if the risk of the learned classifier
converges to the risk of the optimal classifier, as the amount of training data
approaches infinity, where the optimality is defined over a given hypothesis
class.
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minimizer by UnionNet would converge to the true
risk minimizer as the amount of training data tends to
infinity.

3) For practical performance, we conduct extensive exper-
iments on synthesized as well as real-world crowd-
sourced datasets, and the experimental results demon-
strate that UnionNet is superior to the state-of-the-art
counterparts.

4) For training efficiency, we experimentally show that the
training time of UnionNet is nearly the same as that
of standard DNN trained with correct labels, which is
significantly less than that of other end-to-end methods.

II. RELATED WORK

In this section, we briefly review existing works on learn-
ing with crowdsourced labels. Most of the existing methods
belong to two categories: EM-style algorithms and end-to-end
algorithms.

A. EM-Style Algorithms

For learning with crowdsourced labels, a large number
of methods [7], [10] are based on the key idea of the
EM algorithm [11]. For example, GLAD [10] proposed to first
infer the ground-truth label for each instance by aggregating
the given labels from multiple annotators, and then train
the classifier based on the inferred labels. Another important
work in this direction [7] considers the ground-truth labels as
latent variables, thereby jointly learning different annotators’
expertise and training an effective logistic regression classifier.
This prominent work inspired a number of follow-up works,
such as Gaussian process classifiers [12], supervised latent
Dirichlet allocation [13], and convolutional neural networks
with softmax outputs [2], [14].

B. End-to-End Algorithms

Despite the effectiveness of the above EM-style algorithms,
their computational complexity of training could be high
due to the alternating optimization manner. This issue may
deteriorate when DNNs are used for training. To ease this
problem, an end-to-end approach called CrowdLayer [8] for
deep learning with crowdsourced labels was proposed, which
is able to directly train a DNN with crowdsourced labels
through a crowd layer that models the annotator-specific tran-
sition matrix of each annotator. In this way, the classifier and
the crowd layer can be trained simultaneously by backpropaga-
tion [15], thereby improving the training efficiency. Following
this idea, a recent method called SpeeLFC [9] proposed a prob-
abilistic model that learns an interpretable transition matrix
for each annotator, which also allows an end-to-end structure
for training a DNN. In addition, there exist some end-to-end
methods that do not rely on any annotator-specific transition
matrix. For example, DoctorNet [1] aims to train DNNs that
exploit different annotators’ information with different softmax
output layers. Its variant WDN [1] trains the classifier with
multiple output layers and learns combination weights for
aggregating the outputs.

TABLE I

COMPARISONS BETWEEN OUR PROPOSED ALGORITHMS AND RELATED
STUDIES. “END-TO-END”: DOES THE ALGORITHM FOLLOW AN

END-TO-END LEARNING ARCHITECTURE? “ONE-WAY”: DOES

THE ALGORITHM TRAIN THE DEEP NEURAL NETWORK

WITHOUT MULTIPLE TRANSITION MATRICES
(FOR IMPROVING TRAINING EFFICIENCY)?

“THEORY”: IS THE ALGORITHM

THEORETICALLY GUARANTEED?

Compared with EM-style algorithms, these end-to-end algo-
rithms that accommodate DNNs achieve comparable even
better performance. However, these algorithms still have two
major limitations. They do not hold learning consistency and
do not have high training efficiency due to the existence of
multiple annotator-specific matrices. In the following sections,
we will first introduce some preliminaries of this article, and
then present a novel end-to-end method (with two practical
algorithms) that relies on only a single transition matrix,
which not only addresses the above two limitations, but
also achieves better performance than other counterparts. The
detailed comparisons between our proposed algorithms and
related studies are presented in Table I.

The outline of this article is as follows. In Section III,
we present the problem setting and the formulation of Crowd-
Layer. In Section IV, we introduce the two solutions of
UnoinNet and provide theoretical analysis in Section V.
In Section VI, we experimentally analyze the proposed meth-
ods on synthesized datasets and real-world datasets. Moreover,
we also provide ablation study and training efficiency analysis
to further demonstrate the advantage of our methods. Finally,
we conclude the article in Section VII.

III. PRELIMINARIES

In this section, we introduce the problem setting of learning
with crowdsourced labels and the formulation of CrowdLayer,
which is a representative related work.

A. Problem Setting

Let D = {(xi , Yi )}n
i=1 be a crowdsourced dataset that

includes n examples with k classes, where for each instance
xi ∈ R

d , we receive a set of crowdsourced labels Yi = {ỹ j
i |

j = 1, . . . , m}, with ỹ j
i representing the label provided by the

j th annotator in a set of m annotators. It is worth noting that
the number of crowdsourced labels of different examples could
be different. Hence, |Yi | may not be equal to |Y j | if i �= j .
Following [7]–[9], [16], we also assume each instance xi
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Fig. 1. Training schemes of UnionNet (ours) for the classification task with five classes and three annotators. For the two algorithms of UnionNet, softmax
operation is either applied on transformed outputs for (a) UnionNet-A or columns of the transition matrix for (b) UnionNet-B. In the test stage, ŷ can be
readily used to make predictions for an unseen instance xi .

has its corresponding latent ground-truth label yi and it is
related to the crowdsourced labels Yi . It is worth noting that
learning with crowdsourced data is a multiclass classification
problem, which means there is only a true label for each
training instance. This setting is different from multilabel
learning [17]–[21] where multiple true labels are provided for
each training instance. Under this setting, our goal is to train a
classifier f based on a crowdsourced dataset D = {(xi , Yi )}n

i=1
that could accurately predict the ground-truth label of an
unseen instance in the test phase.

B. Formulation of CrowdLayer

Instead of using an alternating optimization manner of
EM-style algorithms, CrowdLayer [8] aims to train an end-to-
end DNN that simultaneously optimizes all the components.
Specifically, CrowdLayer relies on a crowd layer that takes
the softmax outputs of a standard DNN model as the input,
and learns multiple parametric annotator-specific transition
matrices to fit the given label of each annotator independently.

For each annotator j , we define an annotator-specific crowd
layer by a transition matrix T j , which is equivalent to a
linear layer without bias, i.e., T j ŷ. In CrowdLayer, a tran-
sition matrix is explicitly learned for each annotator, thereby
enabling crowdsourced labels to propagate errors through the
whole network structure. Formally, let ŷ be the softmax
output of a standard classifier. Given a loss function L
(e.g., categorical cross-entropy loss) for classification, Crowd-
Layer minimizes the following objective:

min
�

1

n

n∑
i=1

m∑
j=1

L(
softmax(T j ŷi ), ỹ j

i

)
(1)

where � = {{T j}m
j=1, f } denotes the set of all learning

parameters that include the parameters of transition matrices
and the classifier. Trained with the above objective function,
CrowdLayer achieves the goal of directly learning from crowd-
sourced labels in an end-to-end manner. However, CrowdLayer
does not hold learning consistency. In addition, most existing
end-to-end methods, including CrowdLayer and SpeeLFC,
need to forward propagate through multiple linear layers in a
for-loop way. It also introduces extra computational complex-
ity, especially when scaling to a large number of annotators.

IV. PROPOSED UNIONNET

As described above, the training inefficiency of existing
end-to-end algorithms is caused by the for-loop forward prop-
agation of multiple independent annotator-specific transition
matrices. Hence, we conjecture that if we use a single transi-
tion matrix, the training efficiency may be improved.

A. Union of Crowdsourced Labels

We present a novel end-to-end method called UnionNet,
which allows us to leverage a single transition matrix to
directly train a DNN with the crowdsourced labels provided by
multiple annotators. UnionNet not only experimentally outper-
forms other end-to-end counterparts, but also holds learning
consistency and has high training efficiency. As shown in
Fig. 1(b), instead of learning an independent annotator-specific
transition matrix for each annotator, we propose to learn a
single transition matrix. In this way, we could transform the
softmax outputs of the standard classifier via this transition
matrix to fit a union of labeling information provided by all
the annotators.

By taking the labeling information provided by all the
annotators as a union, our proposed UnionNet is advantageous
in two aspects. First, unlike previous methods [8], [9] that
treat each annotator equally, UnionNet naturally coordinates
the contributions of different annotators on the true label.
Specifically, in CrowdLayer, each annotator would contribute
a loss independently, while in our UnionNet, there is only a
single loss that is contributed by all the annotators. There-
fore, UnionNet takes into account the collaboration of all
the annotators, while previous methods treat each annotator
independently. Hence, UnionNet is expected to achieve better
performance, especially in the correlated settings. Second,
previous methods conduct forward propagation through mul-
tiple linear layers (i.e., transition matrices) in a for-loop way.
In contrast, UnionNet only has a single transition matrix, hence
it avoids that for-loop way. Therefore, UnionNet would be
more computationally efficient.

Therefore, the question becomes how to combine the crowd-
sourced labels of all the annotators as a union. Our proposed
UnionNet provides a simple yet effective answer to this ques-
tion. Concretely, we can concatenate the vectors of one-hot
encoded crowdsourced labels provided by different annotators
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to form a united vector ỹi

ỹi = concatenate
(
e( ỹ1

i ), e( ỹ2
i ), . . . , e( ỹm

i )) (2)

where e( ỹ j
i ) := (0, . . . , 1, . . . , 0)� ∈ {0, 1}k is a one-hot vector

and only the ỹ j
i th entry of e( ỹ j

i ) is 1. When the j th annotator
does not provide a label for the i th instance xi , we define the
vector e( ỹ j

i ) as a zero vector. In this way, all the crowdsourced
labels are processed as a union. Here, one may think that we
could use another combination method to produce a union of
crowdsourced labels. For example, we could sum up the vec-
tors of one-hot encoded crowdsourced labels together to create
a single union vector. However, this simple addition operation
could not fully capture the complex relationships between the
crowdsourced labels and the ground-truth label. In contrast,
our proposed concatenation operation in (2) enables the union
of crowdsourced labels to contain the information of annota-
tors so that it can automatically coordinate the influences of
different annotators. We also experimentally demonstrate the
advantage of our concatenation operation over the addition
operation by conducting ablation studies in the experiment
section.

B. Training Objective

By taking the crowdsourced labels as a union vector ỹi , our
final goal is to train an end-to-end deep model by fitting this
union vector ỹi . To achieve this goal, we adopt the widely used
maximum likelihood principle [22], [23]. Formally speaking,
we would like to maximize the p(̃y | x), where p(̃y | x) can
be formulated as

p(̃y | x) =
∑

y

p(̃y, y | x) =
∑

y

p(̃y | y, x)p(y | x)

=
∑

y

p(̃y | y)p(y | x) (3)

where the last equality holds due to the widely used assump-
tion [7]–[9] that the crowdsourced labels are only related to
the ground-truth label y and independent of the instance x.
It is worth noting that there is a similar assumption in the
area of noisy-label learning [24]–[37] that the observed label
noise is class-conditional. In this way, the expected risk of
our proposed UnionNet could be formulated as the negative
expected log-likelihood

R( f ) = −Ep(x,̃ y)
[

log p(̃y | x)
]

(4)

where p(̃y | x) denotes the distribution of crowdsourced data.
In terms of (3), the key of our proposed end-to-end learning
method is how to empirically approximate the union vector ỹi

by using different components in our deep architecture. Here,
we provide two solutions, which are named UnionNet-A and
UnionNet-B, respectively.

1) UnionNet-A: Motivated by the training objective of
CrowdLayer [8] in (1), we could empirically approximate the
union vector ỹi of xi by softmax(T ŷi ) where ŷi denotes the
softmax outputs of the standard classifier and T ∈ R

km × R
k

is a parametric transition matrix, which is defined as a linear
layer without bias. It is worth noting that we need to further

conduct the softmax operation on T ŷi to make it always
nonnegative, as there is no constraints posed on the transition
matrix T . Guided by the expected risk in (4), we have the
following training objective of UnionNet-A:

min
�

− 1

n

n∑
i=1

ỹi log
(
softmax(T ŷi )

)
(5)

where � = {T , f } denotes the set of all learning parame-
ters. It is worth noting that for UnionNet-A, the parametric
transition matrix T is not able to model the conditional
probability p(̃y | y) since the elements of T may be smaller
than 0. As a consequence, UnionNet-A may not hold any
theoretical guarantee, since it does strictly follow from (3)
to (4). To alleviate this issue, we further present the other
solution UnionNet-B, which is theoretically guaranteed.

2) UnionNet-B: Motivated by SpeeLFC [9] that employs
a probabilistic parametric transition matrix to enhance the
interpretability for each annotator, we could also empirically
approximate the union vector ỹi of xi by softmax(T )̂yi

where softmax(T) means taking the softmax operation on
each column of the parametric transition matrix T , which
is a linear layer without bias. It is worth noting that each
column of softmax(T) indicates that the probability vector
of each true label y becomes a specific union vector ỹ.
Therefore, we need to impose the softmax operation on each
column of T to satisfy the requirements of p(̃y | y), i.e.,∑

ỹ p(̃y | y) = 1 and p(̃y | y) ≥ 0 for any ỹ and y. Other
weakly supervised learning settings have also provided various
attempts to estimate such kind of probabilistic transition matrix
using anchor points [24], [38], or learn it as a noise adaptation
layer [39]. Our proposed UnionNet-B adopts the latter strategy,
and the training objective of UnionNet-B is expressed as

min
�

− 1

n

n∑
i=1

ỹi log
(
softmax(T )̂yi

)
(6)

where � = {T , f } denotes the set of all learning parameters.
It is worth noting that SpeeLFC employs multiple probabilistic
parametric transition matrices, each for an annotator, and
it does not hold any guarantee. In contrast, our proposed
UnionNet-B only uses a single probabilistic parametric transi-
tion matrix, and we will show that it is theoretically consistent
and has higher training efficiency.

3) Differences Between UnionNet-A and UnionNet-B: As
shown in Fig. 1, both the two proposed methods optimize a
single probabilistic parametric transition matrix. Differently,
UnionNet-A applies the softmax operation on transformed
outputs while UnionNet-B uses it on columns of the transition
matrix. As a result, UnionNet-B is theoretically consistent but
UnionNet-A do not hold any theoretical guarantee. In addition,
the softmax operation on columns of the parametric transition
matrix provides a better way to automatically coordinate the
influences of different annotators, which is clearly supported
by the empirical results in Table III. With such a guarantee,
UnionNet-B is expected to achieve better empirical perfor-
mance than UnionNet-A.
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Algorithm 1 UnionNet
Input: Classifier f with W , transition matrix T , number of

epochs Emax;
1: for e = 1, 2, . . . , Emax do
2: ŷ = f (x, W);
3: Obtain union ỹ by (2);
4: Obtain L by (5) for UnionNet-A or (6) for UnionNet-B

based on ỹ and ŷ;
5: Update {W, T } by L using Adam optimization method.
6: end for
Output: W

C. Initialization Strategy

A good initialization strategy for the parametric transition
matrix T is helpful for the convergence of the whole network
architecture in the training stage. At the beginning of training,
we could treat the linear layer (which represents the whole
transition matrix) as a simple concatenation of m sub-layers
and each of them represents a transition matrix of a annotator:
T = concatenate(T 1, T 2, . . . , T m). We adopt the following
two initialization strategies in the experiments.

For the first initialization strategy, we follow Crowd-
Layer [8] to initialize the sub-layer for each annotator as:

T r (a, b) = (1 − �)I{a=b} + �

C − 1
I{a �=b} (7)

where Icondition = 1 when condition is true, Icondition = 0 when
condition is false, and � denotes an extremely small constant,
which is fixed at 10−5 in our experiments.

For the second initialization strategy, we follow [7], [14] to
initialize the sub-layer for each annotator as:

T r (a, b) = log

∑n
i=1 Q(yi = a)I{ ỹ j

i =b}∑n
i=1 Q(yi = a)

(8)

where Q(yi = a) := (1/m)
∑m

r=1 I{ ỹ j
i =a}.

We will provide detailed information about which strategy
will be adopted on which dataset in the experiments. The
details of our proposed UnionNet are shown in Algorithm 1.
Specifically, UnionNet is more computationally efficient since
it only optimizes a single transition matrix during training,
thereby avoiding the for-loop way in previous methods. More-
over, UnionNet explores the relationships between annotators
by the concatenate operation, thereby being able to achieve
better practical performance.

V. THEORETICAL ANALYSIS

For UnionNet, the crowdsourced labels for each instance
are taken as a union vector. In this way, we could represent
the provided crowdsourced datasets as {xi , ỹi }n

i=1, where each
example is assumed to be independently sampled from the
distribution of crowdsourced data p(x, ỹ). It is noteworthy
that for UnionNet-B, softmax(T) could perfectly model the
conditional probability p(̃y | y) in (3). Hence, we only focus
on the theoretical analysis of UnionNet-B, and represent the
used transition matrix softmax(T) as T̃ .

We define the model class as F ⊂ { f : R
d �→ R

k} and
define the true risk minimizer as

f � = arg min
f ∈F

Ep(x,y)

[L( f (x), y)
]

(9)

where p(x, y) denotes the underlying data distribution of
the normal example (x, y) and y is the true label of x.
Then we define the obtained empirical risk minimizer by
minimizing (6) as f̂ . In the following, we will prove that the
obtained empirical risk minimizer f̂ would converge to the
true risk miminizer f � as the collected crowdsourced training
data approaches infinity.

First of all, we prove that the obtained expected risk
minimizer f̃ � by minimizing (4) is exactly the same as the
true risk minimizer f � if the categorical cross entropy loss is
used in (9).

Lemma 1: Suppose g(x) = softmax( f (x)), by optimiz-
ing (9) with categorical cross entropy loss, the optimal map-
ping g� (w.r.t. f �) satisfies g�

i (x) = p(y = i | x),∀i ∈ [k].
Proof: If the cross entropy loss is used, we have the

following optimization problem:

φ(g) = −
k∑

i=1

p(y = i | x) log(gi(x))

s.t.
k∑

i=1

gi(x) = 1.

By using the Lagrange multiplier method, we can obtain the
following nonconstrained optimization problem:

�(g) = −
k∑

i=1

p(y = i | x) log(gi(x)) + λ(

k∑
i=1

gi(x) − 1)).

By setting the derivative to 0, we obtain

g�
i (x) = 1

λ
p(y = i | x).

Because
∑k

i=1 g�
i (x) = 1 and

∑k
i=1 p(y = i | x) = 1, we have

k∑
i=1

g�
i (x) = 1

λ

k∑
i=1

p(y = i | x) = 1.

Therefore, we can easily obtain λ = 1. In this way, g�
i =

(1/λ)p(y = i | x) = p(y = i | x), which concludes the proof
of Lemma 1. �

Theorem 1: When the transition matrix T̃ has full rank
and the condition in Lemma 1 is satisfied, our expected risk
minimizer f̃ � is the same as the true risk minimizer f �, i.e.,
f̃ � = f �.

Proof: According to Lemma 1, when we obtain f̃ �

by optimizing (4), we could optimally fit the conditional
probability p(̃y | x)

q�(x) = p(̃y | x).

Let us introduce v(x) = p(y | x) and ṽ(x) = p(̃y | x).
According to (3), we have

ṽ(x) = T̃v(x).
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Since q�(x) = ṽ(x), we have q�(x) = T̃v(x). Besides,
we obtain g̃�(x) (g̃�(x) = softmax( f̃ �(x))) by optimizing (4).
Thus q�(x) = T̃ g̃�(x), which further ensures that T̃v(x) =
T̃ g̃�(x). In this way, if the transition matrix T̃ has full rank,
we can obtain v(x) = g̃�(x). As we have shown that v(x) =
p(y | x) = g�(x) where g�(x) = softmax( f �(x)), we can
obtain g̃�(x) = g�(x), which implies that f̃ � = f �. Thus
Theorem 1 is proven. �

Next, we theoretically establish an estimation error
bound, which demonstrates the learning consistency of
UnionNet-B based on Rademacher complexity [40]. From (6),
we can introduce a composite loss L̃( f (x), ỹ) =
− ỹ log(T̃softmax( f (x))). Let F be represented as F = F1 ×
· · · × Fk , where Fi := { f : x �→ fi (x) | f ∈ F},∀i ∈ [k].
We denote by Rn(Fy) the Rademacher complexity of Fy given
the sample size n over p(x). Then we have the following
theorem.

Theorem 2: Assume L̃ is ρ-Lipschitz (ρ < 0 < ∞)
continuous w.r.t. f (x) and upper bounded by M , i.e., for any
(x, ỹ) ∼ p(x, ỹ), L̃( f (x), ỹ) ≤ M . Then, for any δ > 0,
with probability at least 1 − δ

R( f̂ ) − R( f �) ≤ 2
√

2ρ

k∑
y=1

Rn(Fy) + M

√
log 2

δ

2n
. (10)

Proof: Before proving Theorem 2, we first introduce
the following notations: f̃ � = arg min f ∈F R( f ) and f̂ =
arg min f ∈F R̂( f ), and R̂( f ) represents the objective in (6) of
UnionNet-B, which is an empirical approximation of R( f ).
Then, the following inequality holds:

R( f̂ ) − R( f �) ≤ R( f̂ ) − R̂( f̂ ) + R̂( f̂ ) − R( f̃ �)

≤ R( f̂ ) − R̂( f̂ ) + R( f̂ ) − R( f̃ �)

≤ 2 sup
f ∈F

∣∣R( f ) − R̂( f )
∣∣.

Then, we introduce the uniform deviation bound, which is
useful to derive estimation error bounds. The proof can be
found in some textbooks such as [40, Th. 3.1].

Lemma 2: Let Z be a random variable drawn from a
probability distribution with density μ, H = {h : Z �→ [0, M]}
(M > 0) be a class of measurable functions, {zi }n

i=1 be i.i.d.
examples drawn from the distribution with density μ. Then,
for any, delta > 0, with probability at least 1 − δ

sup
h∈H

∣∣∣∣∣EZ∼μ

[
h(Z)

] − 1

n

n∑
i=1

h(zi )

∣∣∣∣∣ ≤ 2Rn(H) + M

√
log 2

δ

2n
.

Based on Lemma 2, we can directly obtain the following
lemma.

Lemma 3: Assume L̃ is upper bounded by M , i.e., for any
(x, ỹ) ∼ p(x, ỹ), L̃( f (x), ỹ) ≤ M . Then, for any δ > 0, with
probability at least 1 − δ

R( f̂ ) − R( f �) ≤ 2Rn(L̃ ◦ F) + M

√
log 2

δ

2n

where L̃ ◦ F is defined as L̃ ◦ F = {L̃ ◦ f | f ∈ F}.

Then, we need to upper bound Rn(L̃ ◦ F). Since L̃ is
assumed to be ρ-Lipschitz continuous w.r.t. f (x), according
to the Rademacher vector contraction inequality [41], we have

R̂n(L̃ ◦ F) ≤ √
2ρ

k∑
y=1

R̂n(Fy)

where R̂n(F) and R̂n(Fy) are the empirical Rademacher com-
plexity [40] of F and Fy. By taking the expectation over p(x),
we have Rn(L̃ ◦ F) ≤ √

2ρ
∑k

y=1 Rn(Fy). By further taking
into account Lemma 3, Theorem 2 is proven. �

Generally, Rn(Fy) can be bounded by CF/
√

n for a positive
constant CF [28], [42], [43]. Hence, Theorem 2 demonstrates
that the empirical risk minimizer f̂ (obtained by learning from
only crowdsourcing data) converges to the true risk mini-
mizer f � (obtained by minimizing the expected classification
risk on fully labeled data) as the number of crowdsourcing
data approaches infinity (n → ∞). Such a theoretical result
indicates that we can obtain a reasonable classifier by directly
using our UnionNet-B with only crowdsourcing data, and such
a classifier would be better if more crowdsourcing data are
provided. In addition, we can observe that the convergence
rate of the derived bound in Theorem 2 is Op(1/

√
n) where

Op denotes the order in probability. This order is known as
the optimal parametric rate for empirical risk minimization
without additional assumptions [44].

VI. EXPERIMENTS

A. Benchmark Datasets

1) Synthesized Datasets: Four widely used synthesized
datasets are used in our experiments [8], [14], [45]. Dogs
versus Cats dataset consists of 25 000 images from two
classes dogs and cats, which is split into a 12 500-image
training set and a 12 500-image test set. CIFAR-10 dataset
consists of 60 000 images from ten classes, which is split
into a 50 000-image training set and a 10 000-image test
set. MNIST dataset also contains 60 000 training images and
10 000 testing images. LUNA16 dataset consists of 888 CT
scans for lung nodule. We preprocessed the CT scans by
generating 8106 50×50 gray-scale images, which is split into
a 6484-image training set and a 1622-image testing set.

For each synthesized dataset, we follow [14] to gener-
ate two groups of crowdsourced labels: labels provided by
(H) annotators with relatively high expertise; (L) annotators
with relatively low expertise. Besides, we consider two cases
of mistakes: independent mistakes, where senior annotators are
mutually conditionally independent, and correlated mistakes,
where senior annotators are mutually conditional independent,
and each junior annotators copies one of the senior annota-
tors. For each of the situations (H) and (L), the two cases
have the same senior annotators. For independent mistakes,
we set the number of annotators to five and ten for the
situations (H) and (L), respectively. For correlated mistakes,
the number of senior annotators is set to five and ten for the
situations (H) and (L), while the number of junior annotators
is set to five and two for the situations (H) and (L). In the
following, we will introduce the details of the two cases for
different datasets.

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on May 02,2022 at 05:05:26 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEI et al.: DEEP LEARNING FROM MULTIPLE NOISY ANNOTATORS AS A UNION 7

2) Independent Mistakes: For Dogs versus Cats, in situa-
tion (H), some senior annotators are more familiar with cats,
while others make better judgments on dogs. Specifically,
the expertise of five annotators are A: 0.6/0.8, B: 0.6/0.6,
C: 0.9/0.6, D: 0.7/0.7, E: 0.6/0.7. For example, the expertise
of annotator A is 0.6/0.8 in the sense that if the ground truth is
dog/cat, she labels the image as “dog”/“cat” with probability
0.6/0.8, respectively. In situation (L), all ten seniors’ expertise
are 0.55/0.55.

For CIFAR-10, in situation (H), we generate annotators
who may make mistakes in distinguishing the hard pairs:
cat/dog, deer/horse, airplane/bird, automobile/trunk, frog/ship,
but can perfectly distinguish other easy pairs (e.g. cat/frog),
which makes sense in practice. When they cannot distinguish
the pair, some of them may label the pair randomly and
some of them label the pair the same class. In detail, for
each hard pair, annotator A label the pair the same class
(e.g., A always labels the image as “cat” when the image has
cats or dogs), annotator B labels the pair uniformly at random
(e.g., B labels the image as “cat” with the probability 0.5 and
“dog” with the probability 0.5 when the image has cats or
dogs). Annotator C is familiar with mammals so she can
distinguish cat/dog and deer/hose, while for other hard pairs,
she label each of them uniformly at random. Annotator D
is familiar with vehicles so she can distinguish airplane/bird,
automobile/trunk, and frog/ship, while for other hard pairs, she
always label each of them the same class. Annotator E does
not have special expertise. For each hard pair, annotator E
labels them correctly with the probability 0.6. In situation (L),
all ten senior experts label each image correctly with probabil-
ity 0.2 and label each image as other false classes uniformly
with probability (0.8/9). We use the same settings for the
MNIST dataset.

For LUNA16, in situation (H), some senior annotators tend
to label the image as “benign” while others tend to label the
image as “malignant.” Their expertise for benign/malignant
are: A: 0.6/0.9, B: 0.7/0.7, C: 0.9/0.6, D: 0.6/0.7, E: 0.7/0.6.
In situation (L), all ten seniors’ expertise are 0.6/0.6.

3) Correlated Mistakes: For Dogs versus. Cats, MNIST,
CIFAR-10 and LUNA16, in situation (H), two junior anno-
tators copy annotator A’s labels and three junior annotators
copy annotator C’s labels; in situation (L), one junior annotator
copies annotator A’s labels and another junior annotator copies
annotator C’s labels.

4) Real-World Datasets: Two widely used real-world
datasets are used in our experiments [8], [9]. LabelMe dataset
consists of a total of 2688 images, where 1000 of them are
used to obtain labels from multiple annotators from Amazon
Mechanical Turk [46] and the remaining 1688 images are
used for evaluation. Each image is labeled by an average
of 2.547 workers, with a mean accuracy of 69.2% [47].
MGC dataset contains 700 examples (with crowdsourced
annotations) of songs with 30 s in length and are divided into
ten different music genres (classical, country, disco, etc.) [4].

5) Initialization: For the transition matrix in our algorithms,
we use (8) for initialization on CIFAR10 and MGC. On other
datasets, we initialize the layer by (7). The same setting is
applied for CrowdLayer. For SpeeLFC [9], we use the setting

TABLE II

SUMMARY OF TRAINING SETTINGS FOR DIFFERENT DATASETS

described in their article: the values on the diagonal elements
of each transition matrix are initially set to 4.7, and the other
values are fixed at 1.

B. Compared Algorithms

We compare the two algorithms of UnionNet with the
following state-of-the-art algorithms: MajorVote [5], which
trains the network with the majority voting labels from all
the annotators. CrowdLayer [8], which directly learns from
multiple annotators’ labels with multiple annotator-specific
linear layers. DoctorNet [1] which models multiple annotators
individually with different softmax output layers in the deep
architecture. In this baseline, all the annotators are equally
weighted. WDN [1], which is a variant of DocterNet with
learnable weights for different annotators. SpeeLFC [9], which
is a novel end-to-end probabilistic model that learns inter-
pretable parameters of the crowd layer.

We conduct all the experiments on NVIDIA RTX 2080Ti
GPUs. Specifically, we repeat the experiments five times with
different random seeds and calculate the average test accuracy
and standard deviation for reporting the results. In future work,
we would like to implement our UnionNet method using
Mindspore [48], which is a new deep learning computing
framework.

C. Training Settings

1) Network Structure: We use the same base model as the
classifier for all algorithms. Following [8], we employ the
four-layer CNN network as the classifier on Dogs versus Cats
and LUNA16. We use VGG-16 as the classifier on CIFAR10
and use two-layer MLP on MNIST. On LabelMe, we also
follow [8] to use the pre-trained VGG-16 model and apply an
FC layer (with 128 units and ReLU activation) and an output
layer on top with 50% dropout. On MGC, we use a linear
model following the setting of SpeeLFC [9].

2) Optimizer: We use the Adam optimizer [49] for all
the experiments. The hyper-parameters like learning rate for
different datasets are provided in Table II.

D. Experimental Results

1) Synthesized Datasets: Table III shows the test accuracy
of each algorithm on the four synthesized datasets under differ-
ent crowdsourced settings. As we can see, our proposed algo-
rithms achieve the best performance in most cases. On MNIST,
UnionNet-B is the only algorithm that keeps the best or
comparable performance across all the four cases, while
CrowdLayer and UnionNet-A perform bad in the correlated
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TABLE III

AVERAGE TEST ACCURACY (%) WITH STANDARD DEVIATION ON SYNTHESIZED DATASETS UNDER DIFFERENT
SETTINGS (OVER FIVE TRIALS). THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

(H) case. Surprisingly, we observed an abnormal phenomenon
that almost all algorithms except UnionNet-B provide worse
results on two high-expertise cases than on the low-expertise
cases. Recall that we assume that the annotators’ expertise in
situation (H) may vary across different classes. Consequently,
the results we obtained seem to indicate that on multiclass
datasets learning with noisy high-expertise annotations that
needs to take into account class-level differences in expertise
might be even more challenging than learning with simple
low-expertise annotations (i.e., high noise rate).

On CIFAR10, UnionNet-B significantly outperforms all
baselines in all the four settings, especially for experts with
relatively high expertise. Specifically, UnionNet-B achieves
significant improvement by about 12% over the second-best
algorithms across the two cases with high expertise. In the
two cases with low expertise, we observe that UnionNet-B
still achieves the best performance while MajorVote performs
much worse than the other baselines. It is worth noting that
SpeeLFC performs badly on the two cases with relatively
high expertise of both the MNIST dataset and CIFAR10
dataset, which shows the poor applicability of SpeeLFC to
different cases.

On Dog versus Cat and LUNA16 datasets, we observe that
all the methods exhibit similarly high accuracy in the two cases
with high expertise. A possible reason is that there are only two
classes for this dataset. An interesting phenomenon is that our
proposed algorithms consistently outperform all the baselines
under all the settings with correlated mistakes, while they
are slightly inferior but still comparable to the best baseline
in three of the settings with independent mistakes. It shows
that our proposed method has an advantage in handling
correlated mistakes, which are closer to real-world settings.
This phenomenon can be interpreted by that our UnionNet can
naturally coordinate the contributions of different annotators
on the true label and explores the relationships between

TABLE IV

AVERAGE TEST ACCURACY (%) AND STANDARD DEVIATION

(OVER FIVE TRIALS) ON REAL-WORLD DATASETS

the annotators, while previous methods treat each annotator
independently. Therefore, our UnionNet is better suited for
correlated mistakes than independent mistakes. When it comes
to the settings with independent mistakes, our UnionNet would
achieve comparable performance to CrowdLayer since there is
no relationship between the annotators.

2) Real-World Datasets: We also demonstrate the efficacy
of the proposed methods on the real-world crowdsource
datasets using LabelMe and MGC datasets in Table IV.
On LabelMe Dataset, UnionNet-B gets the best result, while
the performance of UnionNet-A is comparable to CrowdLayer
and SpeeLFC. On MGC dataset, UnionNet-B still performs
the best among all the method and UnionNet-A obtains
comparable result with CrowdsLayer, while SpeeLFC is stuck
at local minimum with poor performance.

To demonstrate the ability of our UnionNet to learn the
reliabilities of the annotators, we compare the learned weight
matrices of UnionNet-A and UnionNet-B with those of Crowd-
Layer, SpeeLFC, and the corresponding real confusion matrix
on LabelMe dataset. Following [8], we select four annotators
with the largest number of annotations. The results are shown
in Fig. 2. The real transition matrices of annotators are calcu-
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Fig. 2. Four examples in LabelMe for comparisons between the learned transition matrix of different algorithms and the real transition matrix. Note that
the color intensity of the cells increases with the relative magnitude. The value behind the name of each algorithm is defined as �T j

alg − T j
real�F

, where T j
alg

and T j
real denote the learned weight matrix and the corresponding real confusion matrices for the j th annotator. The smaller the value, the better the fitting

performance.

lated based on their annotations and the ground truth, while
the learned weight matrices of every algorithm are normalized
for fair comparisons. From Fig. 2, we observe that the learned
matrices of UnionNet-A and UnionNet-B are closer to the real
confusion matrix than those of CrowdLayer and SpeeLFC.
This observation validates the effectiveness of our UnionNet,
as UnionNet could automatically coordinate the influences of
different annotators on the true label, while other algorithms
only focus on each annotator independently without explicit
consideration of the relationships among the annotators.

E. Ablation Study

To demonstrate the advantage of our concatenation oper-
ation over the addition operation, we set up the experi-
ments above LabelMe and MGC datasets. For reimplementing
UnionNet-A and UnionNet-B with an addition operation,
we initialize the square transition matrix by (7) on LabelMe.
Slightly different from (8), the transition matrix on MGC is
initialized by taking logarithm before addition. The results are

presented in Fig. 3. On both LabelMe and MGC datasets,
UnionNet-A and UnionNet-B with concatenation operation
consistently perform better than the corresponding algorithms
based on the addition operation, respectively. It verifies that,
compared to the addition operation, the concatenation oper-
ation is more effective to build the union of crowdsourced
labels for training.

F. Training Efficiency Analysis

To demonstrate the advantage of UnionNet in training
efficiency, we train each algorithm for ten epochs on real-world
datasets and show the average training time per epoch in Fig. 4.
Besides, we introduce a new baseline named Standard, which
simply trains on the ground truth label. We omit WDN in the
comparisons as it is one of the variants of DoctorNet and its
training time is much higher than that of the DoctorNet.

On LabelMe dataset, CrowdLayer, DoctorNet, and SpeeLFC
take eight and nine times longer than Standard and Major-
Vote. In contrast, the training speed of both UnionNet-A and
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Fig. 3. Average test accuracy (%) with standard deviation on LabelMe (left)
and MGC (right) over five trials, for different implementations of UnionNet.

Fig. 4. Average training time per epoch (over ten epochs) on LabelMe (left)
and MGC (right) for different algorithms.

UnionNet-B is close to that of Standard and MajorVote, which
means the linear layer proposed in our algorithms runs with
almost no additional computational burden.

The same phenomenon happens on MGC dataset.
Due to their for-loop forward propagation in multiple
annotator-specific transition matrices, DoctorNet spends the
most time in training, followed by CrowdLayer and SpeeLFC.
On the other hand, learning directly from the concatenated
labels through a simple linear layer costs very little on com-
putational resources, shown by UnionNet-A and UnionNet-B.
It shows that our proposed UnionNet is an end-to-end learning
architecture with higher computational efficiency compared
with other existing end-to-end learning algorithms.

VII. CONCLUSION

In this article, we investigated the problem of learning
with crowdsourced labels and proposed a novel end-to-end
deep learning method named UnionNet, which is not only
theoretically consistent but also experimentally effective and
efficient. Specifically, unlike existing methods that either fit
the given label by each annotator independently or fuse all the
labels into a reliable one, we concatenated the one-hot encoded
vectors of crowdsourced labels provided by all the annotators,
which takes all the labeling information as a union and keeps
it intact and coordinates multiple annotators. In this way,
we could directly train an end-to-end deep neural network by
maximizing the likelihood of this union with only a parametric
transition matrix. We theoretically proved the learning consis-
tency and experimentally showed the effectiveness and the effi-
ciency of our proposed method. In future work, we will extend
UnionNet to the regression and structured prediction problems.
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